The Korean Society of Trauma Anesthesia & Critical Care

Anesthetic considerations for Abdominal trauma

Hyoeun Ahn

Department of Anesthesia and pain medicine, Ajou University Hospital,

Ajou University School of Medicine

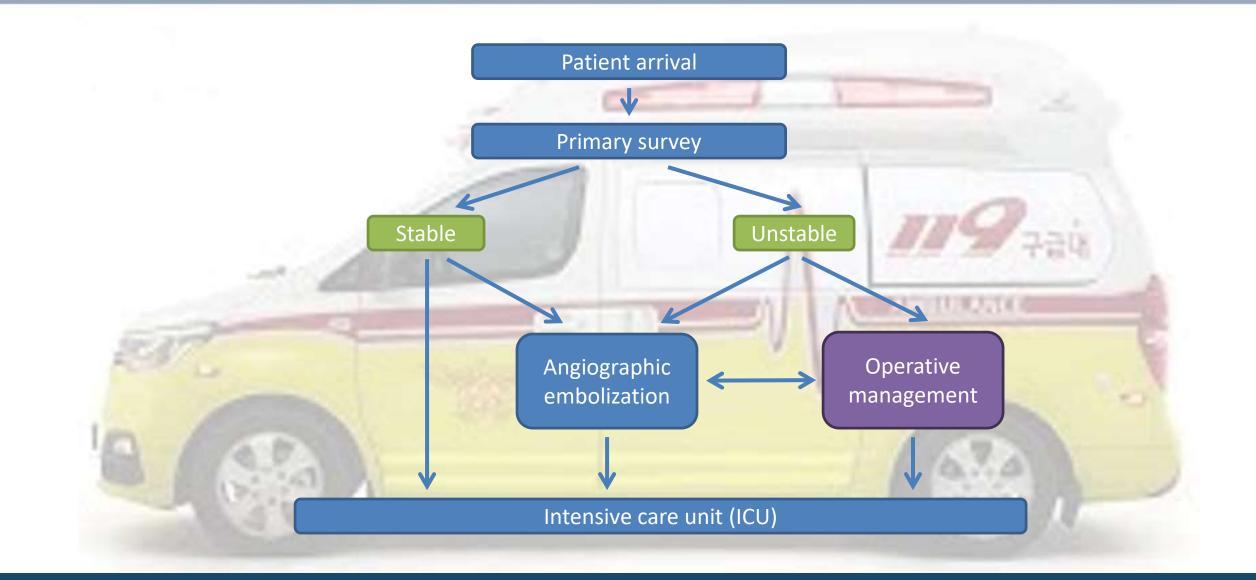
2022.06.25

3

Δ

5

Classification of abdominal injuries


2 Hospital resuscitation

Preoperative preparation

Intraoperative anesthetic management

Acute postoperative considerations

Management flow for Trauma patients

Classification of abdominal injuries

Knowledge of the trauma mechanism

➔ Prediction of the pattern and the severity of injury to abdominal organs and vascular structures

Blunt trauma Penetrating trauma

1) Blunt abdominal trauma

- Mechanism of injury
 - Compression by fixed object (ex. safety belt, steering wheel)
 - Deceleration result in injury to mesentery, large vessels, and solid organ capsule
- Diaphragm rupture and major pelvic fractures are associated with increased risk of intraabdominal organ injury
- Incidence of organ injury : spleen > liver

2) Penetrating abdominal trauma

- Magnitude of injury related to its kinetic energy
 - Stab wounds, low velocity
 - Gunshot wounds, high velocity
- Incidence of organ injury
 - Liver is the most commonly injured solid organ
 - Related to the volume occupied by the organ

Hospital resuscitation

- Prehospital personnel reports are helpful including mechanism of injury, vital signs, Glasgow Coma Scale (GCS) score.
- Once the patient arrives at the hospital, the "primary survey" is initiated to identify and treat life-threatening injuries.
- Laboratory studies, chest x-ray, pelvic x-ray, FAST, CT, DPL, etc.

Preoperative preparation

- ✓ Operating room setup
- ✓ Establishing or confirming a definitive airway
- ✓ Intravenous access
- ✓ Review of preoperative diagnostic evaluations

아두대아파생태

And the second s

1) Operating room setup

- Properly functioning anesthesia machine, oxygen supply source, and various types of prepared airway
- Suction with Yankauer tip, pressure bags, and nasogastric/orogastric tubes
- Preassembled kits for intravenous catheters, arterial lines, and central venous lines
- Equipment for blood transfusion
- Rapid transfusion device with fluid warming
- Convective forced air warming blankets and warming pads

1) Operating room setup - Monitoring

- Patient's oxygenation, ventilation, circulation, and temperature should be continually evaluated.
 - Pulse oximetry, non-invasive blood pressure monitoring, capnography, electrocardiography, core temperature monitoring
- Arterial and central venous access

Dynamic monitors of fluid bolus responsiveness

- Systolic pressure variation (SPV), pulse pressure variation (PPV), stroke volume variation (SVV)

1) Operating room setup - Monitoring

- Exhaled gas CO₂ and nitrogen concentration for screening of air emboli
- Awareness monitoring bispectral index (BIS)
- Transesophageal echocardiography (TEE)
 - Hemodynamic monitor and a diagnostic device (e.g., to detect pericardial tamponade)

2) Securing airway

- Establishing a definitive airway is the first priority
- Rapid sequence induction (RSI) and intubation
 - Generally indicated due to the high risk of aspiration
- If predictably difficult, consider awake intubation
 - Preferably utilizing a fiberoptic bronchoscope

3) Intravenous access

- Significant bleeding requiring large-volume resuscitation is common in abdominal trauma
- Placement of two large-bore upper-extremity intravenous (IV) catheters
 Located in venous systems drain into the superior vena cava (SVC)
- Administration of IV fluid to maintain a systolic blood pressure of 90-100mmHg
 - Mean arterial pressure (MAP) 80mmHg in patients with traumatic brain injury (TBI) or spinal cord injury

3) Intravenous access – Central line

- Subclavian vein
 - Can be cannulated in patients wearing a cervical collar
 - Lowest infection rate
- Internal jugular vein
 - Helpful for both volume administration and central venous pressure monitoring
 - Cannot be accessible in a patient with a cervical collar
- Femoral vein
 - Avoids the potential for pneumothorax, hemothorax, or arrhythmias
 - Unsuitable if there are extensive abdominal or lower extremity injuries

4) Review of preoperative diagnostic evaluations

- Hematocrit, serum chemistry, coagulation studies
- Chest and cervical spine radiographs should be reviewed prior to induction
- Evaluation of preoperative volume status by measuring blood pressure, heart rate, and systolic pressure variability (SPV)

➔ Determination of anesthetic technique, monitoring, and postoperative plans for the traumatized patient

Anesthetic considerations

- Anesthetic plan ; based on knowledge of the patient's injuries, age, known preexisting conditions, response to initial resuscitation, and surgical interventions.
- **Communication with the surgeon** is key with regard to how the surgery is progressing.
 - Anesthesiologist should expect and be prepared for damage control procedure based on injury pattern and patient hemodynamics.

Induction of anesthesia

- Comatose patients in severe shock, and especially in complete cardiopulmonary arrest on admission
 - → Require nothing more than oxygen and possibly a neuromuscular blocking drug
 - until the patient's blood pressure and heart rate rebound
- Analgesia and amnesia should be provided once the hemodynamic status becomes stable enough to tolerate anesthetic drugs
 - To prevent recall
 - Amnestic drugs include midazolam and scopolamine

Induction of anesthesia

- Etomidate is the best induction drug in awake traumatized hypovolemic patients
- Ketamine is also a suitable induction drug
- Propofol and thiopental are available if hemodynamically stable
- Succinylcholine and rocuronium (or vecuronium) for neuromuscular blockade

- Spinal and epidural anesthesia are <u>contraindicated</u> in the unstable abdominal trauma patient
 - Impractical, takes time to set up, can result in several deleterious side effects

Maintenance of anesthesia

- Maintained with inhalational agents or with intravenous drugs such as propofol, with opioid supplementation
- Depending on the degree of hemorrhage, minimum alveolar concentration (MAC) may be decreased by as much as 25%
- All volatile anesthetics produce dose-dependent depression of myocardial contractility
 - Desflurane, isoflurane, and sevoflurane maintain cardiac output better than older agents
- Sevoflurane : best in the multiply injured trauma patient
- Nitrous oxide (N₂O) : avoided to limit bowel and closed-space gas accumulation

Replacing blood loss

- Utilization of high-capacity fluid warming devices for the rapid administration of blood products into tributaries of the SVC can be life-saving
- Massive transfusion protocol (MTP)
 - To insure rapid and timely administration of blood products, including coagulation factors
 - With rapid infusion system (RIS)
- Use autologous blood salvage devices (cell saver) with non-contaminated intraabdominal blood
- Adverse consequences of massive transfusion
 - Coagulopathy, hypothermia, hypocalcemia, hyperkalemia, and hemolysis

Thermal management

- Hypothermia increase morbidity and mortality in severely injured patients
 - Affects the platelet coagulation process, promotes platelet sequestration
 - Reduces drug metabolism
 - Induces vasoconstriction
 - Combined hypothermia and acidosis, reflect a decrease in cardiac output and tissue perfusion.
- Moderate hypothermia (35.5-34.5°C) is neuroprotective.
 - Tolerated in certain conditions, especially when clinical manifestations of bleeding are absent

Neuromuscular blockade

- Muscle relaxation facilitates exposure during exploratory laparotomy.
- Rocuronium is often used in trauma patients due to its rapid onset.
- Vecuronium is often used because of its minimal effects upon the hemodynamic system.

Acid-base management

- Acidosis impairs myocardial contractility in response to both endogenous and exogenous catecholamines.
- Lactic acidosis should be treated by improving oxygen delivery including fluid replacement.

Antibiotics

- Preoperative (empiric/prophylactic) antibiotic therapy
 - → Broad-spectrum coverage of both Gram-positive & Gram-negative bacteria
- 3rd- or 4th-generation cephalosporin in combination with metronidazole is recommended by the American College of Surgeons.
- Sustained gross spillage of gut contents, or received a massive transfusion,
 - ➔ Antibiotics should be repeated more frequently.
- Tetanus prophylaxis must be considered in every trauma patient.

Considerations related to the surgical approach

Diagnostic laparoscopy

- Less invasive, but limited visualization
- Complications related to pneumoperitoneum ; tension pneumothorax, decreased venous return and cardiac output

Exploratory laparotomy

- Ultimate diagnostic modality
- Hemodynamically unstable or difficult hemorrhagic control, the area is packed again, and anesthetic "catch-up" is allowed, with infusion of blood products and/or pressors
- Complex hepatic injuries (grades III-V) generally require temporary portal triad occlusion to gain
 operative visibility and vascular control
- ightarrow decreased right heart venous return

Resuscitation for Damage control surgery

- In unstable, severely injured patients with metabolic derangements
- Hypotensive resuscitation:
 - Give warm IV fluid or blood with close attention to the rate of surgical bleeding
 - Maintain systolic blood pressure (SBP) at 80–90 mmHg until major bleeding has been controlled in patients without head trauma.
- Maintenance of blood composition and chemical equilibrium:
 - Initiate MTP with PRBCs, plasma, and platelets in a ratio close to 1:1:1.
 - Reduce the volume of crystalloids; avoid colloids

Target Hb of 7-9 g/dL; platelets >50x10⁹/L

Resuscitation for Damage control surgery

- Preservation of homeostasis:
 - Restoration of end-organ perfusion:
 - pH >7.25, arterial carbon dioxide <50 mmHg and decreasing lactate level
 - Maintaining normothermia
- Analgesia and sedation should be continued in spite of hemodynamic instability:
 - Analgesia can be achieved with incremental doses of fentanyl.
 - Small boluses of ketamine and midazolam are also advocated.
 - Tracheal extubation is not expected at the end of surgery.

Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA)

- Inflation of the endovascular balloon : similar to aortic cross-clamping
- ➔ Increasing afterload and maintaining perfusion above the balloon, most importantly, to the heart and brain
- Anesthesiologist must be familiar with the physiologic implication of REBOA and be prepared to provide general anesthesia, neuromuscular blockade, and resuscitation.

Inflated

Balloon

Arterial Access

Considerations related to the surgical approach

Abdominal compartment syndrome

- Increased intraabdominal pressure results in impairment circulation, decreased tissue perfusion, and organ dysfunction.
- **Thoracic venous return, cardiac output, and renal function**
- **Tidal volume**, **hentilatory pressures**, and atelectasis
- Cause venous hypertension and elevate intracranial pressure

→ Post-decompression,

- Release of lactate and subsequent hypotensive hemodynamic changes
- IV fluid loading before abdominal decompression
- Vasopressors ; phenylephrine, norepinephrine, vasopressin
- Sodium bicarbonate, calcium chloride

Postoperative ICU considerations

- Focus is on ; continued fluid resuscitation, aggressive warming measures, control of coagulopathic bleeding, and normalization of acidosis
- Prevention of ongoing bleeding and shock, coagulopathy, hypothermia, abdominal compartment syndrome, acute lung injury, deep venous thrombosis and pulmonary emboli, and sepsis.

Goals for anesthetic management for abdominal trauma patient

✓ Limit complications to other systems

- Monitor intracranial pressure, maintain cerebral perfusion pressure > 70mmHg
- Monitor peak airway pressure and tidal volumes
- Employ protective lung ventilation strategy
- Measure urine output
- Monitor peripheral pulses

Goals for anesthetic management for abdominal trauma patient

Re-establish and maintain normal hemodynamics

- For hypotension, fluid first, then vasopressors
- Frequent evaluation of base deficit, hematocrit, urinary output
- Titration of additional anesthetics if robust blood pressure

Maximize surgical exposure and minimize bowel edema

- Limit fluids according to needs
- Limit blood loss by allowing anesthetic catch-up
- Muscle relaxation should be optimized
- Nasogastric or orogastric tube to decompress bowel
- Avoid nitrous oxide (N₂O)

Goals for anesthetic management for abdominal trauma patient

✓ Limit hypothermia

- Monitor core temperature
- Warm all intravenous fluids and blood
- Keep patient covered and warm the operating room (>28°C)
- Apply convective warming blanket and warming mattress

Help limit blood loss and coagulopathy

- Encourage surgeon to stop and pack if blood loss excessive
- Frequently monitor hematocrit, ionized calcium, coagulation studies
- Provide calcium for large citrated product administration
- Administer plasma, platelets, cryoprecipitate, and factor VIIa or prothrombin complex concentrate (PCC), as clinically indicated.

THANK YOU ③